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Abstract

The basic idea of a geometric approach to learning a Bayesian network (BN) structure is
to represent every BN structure by a certain vector. If the vector representative is chosen
properly, it allows one to re-formulate the task of finding the global maximum of a score
over BN structures as an integer linear programming (ILP) problem. Suitable such a zero-
one vector representative is the characteristic imset, introduced in (Studeny, Hemmecke
and Lindner, 2010). In this paper, extensions of characteristic imsets are considered which
additionally encode chain graphs without flags equivalent to acyclic directed graphs. The
main contribution is the polyhedral description (= in terms of a set of linear inequalities)
of the respective domain of the ILP problem. It is just a theoretical result, but it opens
the way to the application of ILP software packages in the area of learning a BN structure.
The advantage of this approach is that, as a by-product of the ILP optimization procedure,
one may get the essential graph, which is a traditional graphical BN representative.

1 Introduction

Learning Bayesian network (BN) structure by
a score and search method means to maximize
a quality criterion Q, also named a score, which
is a real function of the (acyclic directed) graph
G and the observed database D. The value
Q(G, D) evaluates how the BN structure de-
fined by the graph G fits the database D.

Two important technical assumptions on the
criterion @ were pinpointed in the literature in
connection with computational aspects of this
maximization task: @ should be score equiva-
lent (Bouckaert, 1995) and (additively) decom-
posable (Chickering, 2002).

The geometric approach is to represent every
BN structure by a certain vector so that such
a criterion Q becomes an affine function of the
vector representative. This idea was introduced
already by Studeny (2005) and then deepened
in (Studeny, Vomlel and Hemmecke, 2010). A
suitable (uniquely determined) such a zero-one
vector BN representative seems to be the char-
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acteristic imset, introduced at last PGM (Stu-
deny, Hemmecke and Lindner, 2010).

Jaakkola et al. (2010) and Cussens (2010;
2011) came independently with an analogous
geometric approach. The main difference is that
they used certain special zero-one vector codes
of (acyclic) directed graphs to represent (non-
uniquely) BN structures. On the other hand,
they made more progress with the practical use
of integer linear programming (ILP) tools. To
overcome technical problems with the exponen-
tial length of their vectors they utilized the idea
of reduction of the search space from (de Cam-
pos et al., 2009), based on a particular form of
databases and criteria occurring in practice.

In (Studeny and Haws, 2012), both methods
of BN structure vector representation were com-
pared and it was found that the characteristic
imset can be viewed as a (many-to-one) lin-
ear function of the above mentioned codes of
directed graphs. Finally, Lindner (2012) per-
formed some preliminary computational exper-
iments based on the characteristic imset ap-
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proach; an overview of this approach has been
given in (Studeny et al., 2012) and (Hemmecke
et al., 2012).

In this paper, an extended vector BN rep-
resentative is introduced, which encodes both
the characteristic imset and a certain special
graph (equivalent to an acyclic directed graph).
The main result is a polyhedral characterization
of the domain of the respective ILP problem.
More specifically, a set of linear inequalities is
presented such that the only vectors with inte-
ger components in the polyhedron specified by
those inequalities are the above mentioned ex-
tended vector representatives.

The inequalities are classified in four groups.
The number of inequalities in the first two
groups is polynomial in the number of variables
(= nodes of the graph), while the number of re-
maining inequalities is exponential. However,
provided the length of the vector representa-
tives is limited /reduced to a polynomial number
by the idea of from (de Campos et al., 2009),
the number of inequalities in the third group
can be reduced to a polynomial number as well.
The fourth group of inequalities correspond to
acyclicity restrictions. In general, they cannot
be reduced to a polynomial number, but be-
cause of their natural graphical interpretation,
the (modified) cutting plane approach may be
applied to solve the respective ILP problems.

Another advantage of this extended vector
representative is that one can get, as a result
of solving the ILP problem, the essential graph,
which is known as a standard unique graphi-
cal BN representative (Andersson, Madigan and
Perlman, 1997).

2 Basic concepts

Let N be a finite non-empty set of wvariables;
let’s assume |N| > 2 to avoid the trivial case.
In statistical context, the elements of N corre-
spond to random variables in consideration; in
graphical context, they correspond to nodes.

2.1 Graphical concepts

Graphs considered in this paper have N as the
set of nodes and two types of edges between
(distinct) nodes ¢, j € N, namely directed edges,
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called arrows, and denoted like i — j (or j « i),
and undirected edges, called lines, and denoted
like i — j (or j — i). No multiple edges are
allowed between two nodes. If there is an edge
between nodes ¢ and j, we say they are adjacent.
A graph is undirected if it only has lines; it is
directed if it only has arrows.

A cycle of the length m > 3 in a graph H is
a sequence of nodes p : 19,41, ..., tm = ig, where
i1, ..., tm are distinct nodes, and ¢, and 4,1 are
adjacent in H (for each r =0,...,m —1). The
cycle p is chordless if there is no other edge in H
between nodes in {i1, ..., i, = ip} besides those
which form the cycle p. An undirected graph is
called chordal if it has no chordless cycle of the

length m > 4.
The cycle p is directed if i, — i,y in H
for each r = 0,...,m — 1. A directed graph

is acyclic if it has no directed cycle (of arbi-
trary length m > 3). An equivalent definition
of an acyclic directed graph G is that there ex-
ists an ordering b1, ..., by, m > 1 of all nodes
in N which is consistent with the direction of
arrows: b; — b; in G implies ¢ < j. The set of
parents of i € N in a (directed) graph G is the
set pag(i) ={j € N; j—iin G}.

The cycle p is semi-directed if ig — i1 in H
and, for each r = 1,...,m — 1 one has either
ip — dpq1 in H or 4. — dp41 in H. A chain
graph is a graph without semi-directed cycles.

A set C' C N is connected if every pair of dis-
tinct nodes in C' is connected via an undirected
path. Maximal connected sets are called compo-
nents. An equivalent definition of a chain graph
H is that there exists an ordering C1,...,C,,
m > 1 of all its components such that if a — b
in H then a € C; and b € C; with i < j.

2.2 Bayesian network structures

In statistical context, each variable i € N is
assigned a finite sample space X; (of possible
values); assume |X;| > 2 for each i € N to avoid
technical problems.

A Bayesian network (BN) is a pair (G, P),
where G is an acyclic directed graph with the
node set N and P a Markovian probability dis-
tribution (with respect to G) on the joint sample
space [[;en X;. This means P satisfies condi-
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tional independence restrictions determined by
G; see (Lauritzen, 1996) for details. The BN
structure defined by an acyclic directed graph
G is the class of Markovian probability distri-
butions with respect to G on (fixed) [];cn Xi-

However, different graph over N can be
Markov equivalent, which means they define the
same BN structure. Classic graphical char-
acterization of (Markov) equivalent graphs by
Verma and Pearl (1991) says they are equiva-
lent iff they have the same adjacencies and the
same immoralities. Here, an immorality in a
graph G is an induced subgraph (of G) for three
nodes {a, b, c} in which ¢ — ¢ < b (and a and
b are not adjacent).

Learning BN structure means to determine it
on the basis of an observed database D, which
is a sequence z1,...,x, of elements of [[;c X;
(¢ > 1 is the length of the database). This is
often done by maximizing some quality crite-
rion (= score), which is a real function Q of
two variables: of an acyclic directed graph G
and of a database D. The value Q(G, D) quan-
titatively evaluates how well the BN structure
defined by the graph G explains the occurrence
of the database D.

Because the aim is to learn a BN structure,
a natural requirement is that Q should be score
equivalent, which means that, given any D,

Q(G,D) = Q(H, D)

for any pair of Markov equivalent acyclic di-
rected graphs G and H over N.

Additively decomposable criterion is a crite-
rion @ which can be written as follows:

Q(G, D) =" Gippagi) Pijpupag), (1)

1EN

where g; g for i € N, B C N\ {i} are some real
functions and Dy for ) # A C N denotes the
projection of the database D to [[;c4 X;. The
terms q; g(Dy;3up) are named local scores.
Well-known quality criteria used in practice
are Schwarz’s (1978) Bayesian information cri-
terion (BIC) and the Bayesian Dirichlet Equiv-
alence (BDE) score (Heckerman et al., 1995).
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2.3 Essential graphs

A kind of standard (unique) graphical represen-
tative of a BN structure is the so-called essential
graph.

Definition 1. Let G be a Markov equivalence
class of acyclic directed graphs over N. The
essential graph G* of G is defined as follows:

e g —bin G*if a — b in every G from G,

e ¢ — b in G if there are graphs GG; and Ga
in G with @ — b in G1 and a < b in Gs.

This terminology and the first graphical char-
acterization of essential graphs was given by
Andersson, Madigan and Perlman (1997). It
implies that every essential graph is a chain
graph and has no flag, by which is meant an
induced subgraph for three nodes {a,b,c} in
which @ — b — ¢ (and a and ¢ are not adja-
cent). One can introduce a graphical concept of
equivalence for these graphs, which generalizes
Markov equivalence of acyclic directed graphs.

Definition 2. Two chain graphs without flags
G and H over N are equivalent if they have the
same adjacencies and immoralities. Given two
such graphs, we say that H is larger than G if,
for any i,j € N, i — j in H implies ¢ — j in G.

The following characterization of the essen-
tial graphs, proved as Corollary 4 in (Studeny,
2004), will be utilized later.

Lemma 1. Let G be an equivalence class of
acyclic directed graphs over N and H an equiv-
alence class of chain graphs without flags such
that G C H. Then G* is the largest graph in H.

3 Characteristic imset

This algebraic representative of a BN structure
was introduced in (Studeny, Hemmecke and
Lindner, 2010). For our purpose, the following
equivalent definition is suitable.

Definition 3. Let G be an acyclic directed
graph over N. The characteristic imset for G
can be introduced as a zero-one vector cg with
components cg(S) where S C N, |S| > 2, such
that cg(S) =1 iff

Ji € S such that S\ {i} C pag(i). (2)
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The point is that two acyclic directed graphs
G and H over N are Markov equivalent if and
only if cg = cp; see §3 of (Hemmecke et al.,
2012). Moreover, Corollary 2 in (Hemmecke et
al., 2012) implies that, for different i, j, k € N,

(i) i and j are adjacent in G iff cq({i,j}) =1,

(il) ¢ — k « j is an immorality in G iff
cc(ijk) = 1 and ca(ij) = 0.

In particular, one can observe that the charac-
teristic imset cg is uniquely determined by its
values cg(S) for SC N, 2 <|S| < 3.

It appears to be suitable to have a formula
for the characteristic imset on the basis of any
graph H in the class ‘H from Lemma 1. For this
purpose one needs the next auxiliary concept.

Definition 4. We say that a graph H over
S C N has a super-terminal component if there
exists a non-empty set K C S such that

e K is a complete set in H, which means, for
each pair of distinct nodes i,k € K, one
has ¢ — k in H,

eVjeS\K Vie Konehas j—iin H.

It makes no problem see that a super-terminal
component K, if exists, is uniquely determined.

The following result follows directly from
Theorem 2 in (Hemmecke et al., 2012):

Lemma 2. Let H be a chain graph without flags
equivalent to an acyclic directed graph G. For
any S C N, |S| > 2 one has cq(S) = 1 iff the
induced subgraph of H for S (denoted by Hg)
has a super-terminal component.

3.1 Straightforward codes of graphs

Jaakkola et al. (2010) and Cussens (2010;
2011) used a special method for vector en-
coding (acyclic) directed graphs over N. The
vector ng encoding GG has components indexed
by pairs (i|B), where i € N and B C N \ {i}.
Specifically, it is defined as follows:

1 B = paG(i)a
0 otherwise.

na(ilB) = { (3)
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In (Studeny and Haws, 2012), the relation of
the characteristic imset to this straightforward
code of G was established. Actually, cg is a
linear function of ng given by

ca(8) =) >

i€eS B,S\{i}CBCN\{i}

na(ilB)  (4)

for S C N, |S| > 2. Indeed, (4) follows directly
from Definition 3: clearly, at most one node i €
S with S\ {i} C pag(i) exists in an acyclic
directed graph Gg.

4 Integer linear programming

The task to maximize a criterion can be re-
formulated as an integer linear programming
(ILP) problem. Indeed, by (1) and (3), every
decomposable criterion Q can be interpreted as
a linear function of ng, where G falls within the
class of acyclic directed graphs over N.

Jaakkola et al. (2010) gave a finite list of
valid inequalities for ng’s, which characterize
them in the sense that the only vectors with
integer components satisfying those inequalities
are the codes of acyclic directed graphs. Such a
domain description, in terms of polyhedral ge-
ometry named an LP relazation (of the respec-
tive polytope), allows one to turn the learning
task into an ILP problem: to optimize a linear
function over vectors with integer components
within a polyhedron.

Specifically, besides basic non-negativity
and equality constraints, Jaakkola et al. (2010)
came with the following cluster inequalities:

1<> > nglilB)

ieS BCN\S

()

for any S C N, |S| > 2. The meaning of the
inequality (5) is that the induced subgraph Gg
has at least one initial node, that is, a node
1€ S withno j € S with j — iin G. As Gg is
acyclic, the existence of such a node is obvious.

To overcome the technical problem with the
exponential length (in |N|) of vectors ng the
idea of pruning of their components was ap-
plied. The idea taken from (de Campos et al.,
2009) is that a particular form of scoring criteria
used in practice allows one to conclude (on the
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basis of an observed database) that the optimal
graph G has no node i € N with large |pag(7)|.
Therefore, one can exclude from consideration
the respective components of the n-vector. This
pruning procedure is time demanding, but use-
ful: as reported in §6 of (de Campos and Ji,
2011), in practical cases it typically results in
the reduction of the parent set cardinality to at
most 5, only in a few cases the maximal cardi-
nality was 7 or 8.

To overcome the problem with the ex-
ponential number of cluster inequalities
Jaakkola et al. (2010) used the method of iter-
ative constraint adding, where they employed
the dual formulation (of their approximate LP
problems) to guide the choice of a newly added
cluster constraint.

Cussens was in (2010) interested in pedigree
learning, in which case the parent set cardinal-
ity is bounded by 2. However, to ensure the
acyclicity of the graph G he used another trick:
the idea of extending the vector BN representa-
tives. He added some additional components to
the (reduced) ng-vector which allowed him to
encode the total order of nodes consistent with
the direction of arrows in the graph G. Then
he introduced easily an LP relaxation for these
extended vector representatives. Actually, the
number of the added components and the num-
ber of inequalities ensuring acyclicity were both
polynomial in |N|.

The other paper by Cussens (2011) was in-
spired by Jaakkola et al. (2010). Unrestricted
BN structure learning was the goal and to over-
come the problem with the exponential number
of these inequalities Cussens used the cutting
plane approach.

4.1 ILP with characteristic imsets

Lemma 1 in (Hemmecke et al., 2012) says that
every score equivalent and additively decompos-
able criterion Q has the form

Q(G, D) = Q(G°, D)
+ > rB(8) cals),

D
SCN, |S|>2

(6)

where GY is the empty graph over N (= without
adjacencies) and 7‘% uniquely determined vec-
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tor, depending on the database D only, called
the revised data vector (relative to Q). Given
O, one usually can derive a mathematical for-
mula for the components of 7‘%. An alternative
way, described in (Studeny, 2012), is to com-
pute r2(S) for S C N, |S| > 2 from local scores.

That means, the criterion Q@ can be inter-
preted as an affine function (= a linear function
plus a constant) of the characteristic imset c,
which is a unique BN representative. Thus, to
employ the methods of ILP, one has to come
with an LP relaxation for characteristic imsets.

In (Studeny and Haws, 2012), we trans-
formed the above-mentioned LP relaxation
by Jaakkola et al. (2010) through (4) into the
framework of characteristic imsets. A pleasant
finding was that the cluster inequality (5) takes
a neat form

>

TCS,|T|>2

o) (-n"<is|-1. (1)

Another non-trivial observation was that the
transformed linear inequalities define an LP re-
laxation of the characteristic imset polytope.
However, since the number of resulting inequal-
ities is super-exponential in | N|, which is an un-
pleasant consequence of the many-to-one trans-
formation, this LP relaxation does not seem to
be suitable for practical purposes.

Another important fact is that pruning can
also be utilized in the context of characteris-
tic imsets. This follows easily from (4): if the
components of ng were pruned to the maximal
parent set cardinality k£, then one can assume
cg(S) =0 for S C N with |S| > £+ 1 in any
optimal graph G. Then r2(S) for such S need
not be computed.

Lindner (2012) came with another LP relax-
ation of the characteristic imset polytope. She
also used the idea of extending BN vector repre-
sentatives: the components added to the char-
acteristic imset allowed her to encode acyclic di-
rected graphs defining the characteristic imset.
Finally, she performed some preliminary com-
putational experiments based on this approach.
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5 LP relaxation

In this section we present another LP relaxation
for the characteristic imset polytope, also based
on the idea of adding components.

5.1 Extended vector representative

The result from Lemma 1 motivated the idea
to broaden the class of (non-unique) graphical
BN representatives to the class of chain graphs
without flags that are equivalent to acyclic di-
rected acyclic graphs. Lemma 2 then motivated
the following definition.

Definition 5. Let H be a chain graph over
N without flags (equivalent to an acyclic di-
rected graph). We ascribe to H a zero-one vec-
tor (ag,cy) with components given as follows:

ag(i—j)=1 <= i—jin H,

where i, j € N are distinct, and,

cg(S)=1 <= Hg has a super-terminal

component,

for S C N, |S| > 2.

Thus, the a-part of the vector encodes the
presence of arrows i — j in the graph H (=
codes of arrowheads), while the c-part is, by
Lemma 2, the respective characteristic imset.
Note that the number of added components
|IN|- (JN|—1) is polynomial in |N|.

5.2 The list of inequalities

The inequalities are classified in four groups and
none of them is superfluous.

The basic non-negativity inequalities are:
(b.1) Vi,j € N distinct 0 <a(i—jy),
(b.2) VSC N, |S|=3,4 0 <c(S).

The consistency inequalities mainly relate the
a-part to the c-part: for distinct i, j,k € N

(c.1) a(i — j) +a(j — i) < c(ij),
(c.2) c(ij) <1,

(c.3) 2-c(igk) <2-c(ij)+a(i — k)+a(j — k),
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(c.4) a(i — j) +c(jk) < 1+c(ijk)+a(j — k),

(c.5) a(i — j) +c(jk) + c(ik)
§2+a(i—>k)+a(l<:—>j).

The extension inequalities ensure that the c-
part is determined by values c(S), 2 < |S| < 3:

(e.1) VSC N, |S| >3

Yiesc(S\{i}) <24 (15[ —2) - <(9),
(e.2) VSC N, |S| >4

(18] =1) - c(5) < Xiesc(S\ {i}).

Finally, the acyclicity inequalities only con-
cern the c-part and ensure that the solution is
the graph in the considered class:

(a.1) VSCN, S| >4
ZTQS,\T|22 c(T) - (_1)|T‘ < (IS]=1).

Observe these are just the transformed cluster
inequalities (7). Here is the main result.

Theorem 1. Let H be a chain graph with-
out flags equivalent to an acyclic directed graph
over N. Then the inequalities (b.1)-(b.2), (c.1)-
(c.5), (e.1)-(e.2) and (a.1) are valid for the vec-
tor (ag,cy) from Definition 5. Conversely, if
a vector (a,c) with integer components satis-
fies those inequalities, then such (uniquely de-
termined) graph H exists with (a,c) = (ag,cq).

A complete proof is beyond the scope of a
conference paper and can be found in (Studeny,
2012); in fact, a stronger result is derived there
saying that, if (a.l1) is omitted, one still gets
a code of a certain graph H, but with possible
semi-directed cycles. Theorem 1 also holds with
(a.1) replaced by a simplified version, perhaps
easier to implement:

(a.1*) VSC N, |S| >4
ZTgs,zgmgs o(T) - (—1)|T‘ <(s-1).

The resulting polyhedron is, however, different.
Lindner (2012) mentioned (a.1%*), too.

5.3 Interpretation of inequalities

One can give graphical interpretation to (most
of) the inequalities, on which the proof of their
necessity is based.
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(c.1) means that if i — j or j — i is encoded in
a then [i, j] is encoded as an edge in c,

(c.2) means, together with (c.1), that one cannot
have simultaneously ¢ — j and j — ¢ in H,

(c.3) allows one to conclude that if c(ijk) = 1
then H;;, has a super-terminal component,

(c.4) prevents H to have a flag i — j — k,

(c.5) says that H has not a semi-directed 3-cycle
of the form i, j, k,7 with ¢ — j,

(e.1) means: if S has at least 3 subsets T' with
|T| = |S| — 1 with ¢(T") = 1 then ¢(S5) =1,

(e.2) if ¢(S) =1 then at least |S| —1sets T C S
with |T'] = |S| — 1 and ¢(T) = 1 exists.

(a.1) means, loosely said, that the graph Hg has
at least one initial node; it forbids the exis-
tence of a chordal semi-directed /undirected
cycle composed just of the nodes of S.

5.4 The idea of the sufficiency proof

First, one observes that the above inequalities,
together with the assumption that (a,c) has in-
teger components, imply that 0 < ¢(S) <1 for
any S C N, |S| > 2. Given such a vector (a,c),
define a graph H:

i—j inH & a(i—j) =1,
=1&
ai —j)=0&a(j—j

i—j inH & c(ij
)=0.

Then the inequalities allow one to show that H
is 3-acyclic (= has no semi-directed cycle of the
length 3) and has no flags. The next step is to
show that, for distinct i,7,k € N, c(ijk) = 1
iff H;;;, has a super-terminal component. Using
(e.1)-(e.2), this observation is extended to any
S C N, |S| > 2 in place of ijk. Finally, (a.1)
is used to show that H has no semi-directed or
undirected chordless cycle of the length m > 4.

6 Summary of the whole procedure

A pre-processing step should be the pruning in
the context of characteristic imsets; see §4.1.

The result should be a cache of values r2(S) for
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S €T, where T C{S C N; |S| > 2} is a class
of sets closed under subsets such that ¢z (S) =0
for S ¢ T and any optimal G. The hope is that
T will consist of sets of small cardinality.

The first ILP problem to be solved is to max-
imize the function

(a,c) — Z

SeT

Q
D

(5) - c(9)

over the domain of vectors with integral com-
ponents specified by the inequalities from §5.2.
The number of consistency inequalities is poly-
nomial in |N| and, provided |7 | is small, a small
number of extension inequalities is applicable.

The number of acyclicity inequalities cannot
be reduced to a polynomial amount, but one
can apply the idea of iterative constraint adding.
In the first iteration, the acyclicity inequalities
are omitted. The solution of the respective ILP
problem corresponds to a graph H with possible
semi-directed /undirected chordless cycles. One
can identify minimal sets .S of nodes in H form-
ing those cycles. The corresponding acyclic-
ity inequalities are incorporated in the current
list of inequalities and a revised ILP problem
is solved. This procedure is repeated until ei-
ther a solution without those cycles is found or
memory overfill.

Once such a graph H is found, the respective
essential graph G* can be obtained as follows.
The idea is to fix the c-part of the vector solu-
tion and formulate the second ILP problem: to
minimize the objective

>

i JEN i

(a,¢) — a(i — j)

instead, under non-negativity and consistency
constraints. By Lemma 1, the solution should
correspond to the essential graph G* for c.

Conclusions

The main theoretical advantage of the presented
approach (in comparison with the other ILP
approaches) is that the solution is a unique
BN representative and the vector representa-
tives are more compressed. The augmentation
does not kill this comparative advantage be-
cause the extended characteristic imsets are still
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more than |]:;”—times shorter than the straight-

forward graph codes. The number of inequali-
ties is also smaller than Lindner (2012) used.

Another fine feature is that the presented ap-
proach allows one to get directly the essential
graph as a result of solving the ILP problem,
that is, to avoid in this way the need for addi-
tional graph-reconstruction procedure.

Nevertheless, the theoretical assumptions (or
ambitions) must be tested in practice. Realize
that there is also strong influence of the pruning
on the efficiency of the overall procedure and it
is not clear at present whether a smaller num-
ber of inequalities is better than a tighter LP re-
laxation involving more inequalities. Thus, the
proposed LP relaxation should become a basis
for computational experiments, made in coop-
eration with foreign colleagues.
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